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1 Introduction

The origin of the Bekenstein-Hawking area law for black hole entropy remains to be fully

understood. The microscopic origin of the entropy of certain extremal supersymmetric

black holes in string theory was explained in [1] by counting BPS states. While supersym-

metry seemed to play a crucial role in that discussion, recent investigations of the attractor

mechanism (see [2] and references therein) indicate that really only extremality is needed.

Recently, a new duality called the Kerr/CFT correspondence between four-dimensional

non-supersymmetric but extremal Kerr black holes and a two-dimensional CFT was pro-

posed [3], and the Bekenstein-Hawking entropy of the black holes was reproduced as the

statistical entropy of the dual CFT using the Cardy formula. Here extremality is once

again important in order to take the near horizon limit of the black hole and define the

dual CFT.1

1See [4–7] for earlier work, and [8] for some recent progress.
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In this paper we show that the Kerr/CFT correspondence generalizes to the Kerr-

Newman-AdS-dS/CFT correspondence in four dimensions. The near horizon metric of

these general extremal black holes has the U(1) × SL(2, R) symmetric form2

ds2 = Γ(θ)

[

−r2dt2 +
dr2

r2
+ α(θ)dθ2

]

+ γ(θ)(dφ + krdt)2 . (1.1)

We argue that quantum gravity on this geometry is dual to a 2D CFT and derive the central

charge. We further compute the temperature and, assuming the Cardy formula, show that

the statistical entropy of the CFT is exactly equal to the Bekenstein-Hawking entropy.3

The calculation of the central charge is similar to [3], which was based on the approach

originally taken by Brown and Henneaux for AdS3 [13]. We impose boundary conditions on

the metric identical to those for near horizon extreme Kerr, and show that the asymptotic

symmetries form a Virasoro algebra with central charge4

cL = 3k

∫ π

0
dθ

√

Γ(θ)α(θ)γ(θ) (1.2)

=
12r+

√

(3r4
+/ℓ2 + r2

+ − q2)(1 − r2
+/ℓ2)

1 + 6r2
+/ℓ2 − 3r4

+/ℓ4 − q2/ℓ2
. (1.3)

The “temperature” of the CFT, i.e. the thermodynamic potential dual to the zero mode

of the Virasoro algebra, follows from the first law of black hole thermodynamics, and works

out to

TL =
1

2πk
. (1.4)

Plugging this into the Cardy formula we obtain the statistical entropy

S =
π2

3
cLTL =

π

2

∫ π

0
dθ

√

Γ(θ)α(θ)γ(θ) , (1.5)

which is equal to the Bekenstein-Hawking entropy of (1.1).

The central charge of the Kerr-Newman-AdS-dS black hole is proportional to angular

momentum J , so in the Reissner-Nordstrom-AdS limit J → 0, the central charge vanishes.

In the same limit, the temperature blows up, so the Cardy formula still produces the

correct entropy, but the description is clearly breaking down. In this situation we should

seek an alternate well-behaved dual CFT description. The existence of more than one CFT

description is to be expected. For example, the 5D black hole of [1] has multiple dual CFT

descriptions. The central charge of the dual CFT is determined by two of the three charges

Q1, Q5 and n, but which two (or combination thereof) depends on the duality frame. The

2In fact, it was proved in [9, 10] that a very general class of extremal black holes has a near horizon

metric of this form.
3It is suggested in [11] that using [12], the extremal black hole entropy of (1.1) can also be related to

the entanglement entropy between two CFTs dual to AdS2, including higher derivative corrections.
4Here a = J/MADM with MADM =

r+[(1+r2
+/ℓ2)2−q2/ℓ2]

(1−r2
+

/ℓ2)(1−a2/ℓ2)2
, q2 is related to the usual electric and magnetic

charges by q2 = (1 − a2/ℓ2)2(Q2
e + Q2

m) and the horizon radius r+ is the solution of a2 =
r2
+(1+3r2

+/ℓ2)−q2

1−r2
+

/ℓ2
.
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alternative description we employ requires the additional assumption (discussed in section

7) that we can treat the total space of the 4D geometry plus the U(1) gauge bundle as a 5D

geometry in its own right. When J = 0, the boundary conditions adopted for nonzero J

degenerate, and there are alternate boundary conditions which extend the global U(1)gauge

to a Virasoro. With vanishing cosmological constant, the central charge is then found with

the usual methods to be

c = 6Qe

(

Q2
e + Q2

m

)

, (1.6)

where Qe and Qm are the electric and magnetic charges of the black hole, and the associated

temperature is

T =
1

2πQe
. (1.7)

Together these reproduce the Bekenstein-Hawking area law via the Cardy formula.

It seems quite likely that the derivation of the entropy (1.5) is applicable to the very

general class of black holes and near horizon geometries of the form (1.1) found in [9, 10],

including the Kaluza-Klein reduction of higher dimensional black holes, but we have not

checked all the details. We will discuss this issue in section 8.

The organization of this paper is as follows. In section 2 we review the geometry of

the Kerr-Newman-AdS-dS black hole and its near horizon limit. We find the asymptotic

symmetry group for a general class of black holes in Einstein-Maxwell theory in section 3,

and compute the central charge in section 4. The temperature is computed in section 5 and

used in conjunction with the central charge to derive the microscopic entropy in section 6.

In section 7 we consider Reissner-Nordstrom-AdS black holes, and finally we comment on

a more general class of black holes in section 8.

While this paper was in preparation, [14] appeared, which generalizes the Kerr/CFT

correspondence to Kerr-AdS black holes in four and higher dimensions. After this paper

appeared on the ArXiv, we received [15], which treats the 5D rotating Kaluza-Klein black

holes. These have some overlap with our results.

2 Kerr-Newman-AdS-dS black holes

2.1 Geometry

In this section we review the four-dimensional Kerr-Newman-AdS-dS black hole. It is a

solution of the Einstein-Maxwell action

S =
1

16π

∫

d4x
√
−g

(

R +
6

ℓ2
− 1

4
F 2

)

, (2.1)

where ℓ2 is positive (negative) for AdS (dS). In both cases the metric is (eg, [16])

ds2 = −∆r

ρ2

(

dt̂ − a

Ξ
sin2 θdφ̂

)2
+

ρ2

∆r
dr̂2 +

ρ2

∆θ
dθ2 +

∆θ

ρ2
sin2 θ

(

adt̂ − r̂2 + a2

Ξ
dφ̂

)2

, (2.2)

with

∆r = (r̂2 + a2)

(

1 +
r̂2

ℓ2

)

− 2Mr̂ + q2 , ∆θ = 1 − a2

ℓ2
cos2 θ ,

ρ2 = r̂2 + a2 cos2 θ , Ξ = 1 − a2

ℓ2
, q2 = q2

e + q2
m .

(2.3)

– 3 –
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The horizons are located at the zeros of ∆r. We denote the value of r̂ at the outer horizon

by r+. The gauge field and field strength are

A = −qer̂

ρ2

(

dt̂ − a sin2 θ

Ξ
dφ̂

)

− qm cos θ

ρ2

(

adt̂ − r̂2 + a2

Ξ
dφ̂

)

, (2.4)

F = −qe(r̂
2 − a2 cos2 θ) + 2qmr̂a cos θ

ρ4

(

dt̂ − a sin2 θ

Ξ
dφ̂

)

∧ dr̂

+
qm(r̂2 − a2 cos2 θ) − 2qer̂a cos θ

ρ4
sin θdθ ∧

(

adt̂ − r̂2 + a2

Ξ
dφ̂

)

. (2.5)

The angular velocity of the horizon and the entropy are

ΩH =
Ξa

(r2
+ + a2)

, S =
Area

4
= π

r2
+ + a2

Ξ
, (2.6)

Ω∞
H = ΩH +

a

ℓ2
=

a(1 + r2
+/ℓ2)

r2
+ + a2

, (2.7)

where Ω∞
H is the angular velocity measured at spatial infinity, which is used in certain

thermodynamic relations. The Hawking temperature is

TH =
r+(1 + a2/ℓ2 + 3r2

+/ℓ2 − (a2 + q2)/r2
+)

4π(r2
+ + a2)

. (2.8)

The physical mass, angular momentum, and electric and magnetic charges are

MADM =
M

Ξ2
, J =

aM

Ξ2
, Qe =

qe

Ξ
, Qm =

qm

Ξ
. (2.9)

2.2 Extreme limit

In the extreme limit, the inner and outer horizons degenerate to a single horizon at r+.

The extremality condition is

a2 =
r2
+

(

1 + 3r2
+/ℓ2

)

− q2

1 − r2
+/ℓ2

,

M =
r+

[

(

1 + r2
+/ℓ2

)2 − q2/ℓ2
]

1 − r2
+/ℓ2

,

(2.10)

and the entropy at extremality is

S(TH = 0) =
π

(

2r4
+/ℓ2 + 2r2

+ − q2
)

1 − 2r2
+/ℓ2 − 3r4

+/ℓ4 + q2/ℓ2
. (2.11)

2.3 Near Horizon limit

To find the near horizon geometry of the extreme Kerr-Newman-AdS-dS black hole, we

introduce new coordinates following [17]

r̂ = r+ + ǫr0r ,

t̂ = tr0/ǫ ,

φ̂ = φ + ΩH
tr0

ǫ
,

(2.12)

– 4 –
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where r0 is defined below, and take the limit ǫ → 0. The metric becomes

ds2 = Γ(θ)

[

−r2dt2 +
dr2

r2
+ α(θ)dθ2

]

+ γ(θ) (dφ + krdt)2 , (2.13)

where

Γ(θ) =
ρ2
+r2

0

r2
+ + a2

,

α(θ) =
r2
+ + a2

∆θr
2
0

, (2.14)

γ(θ) =
∆θ

(

r2
+ + a2

)2
sin2 θ

ρ2
+Ξ2

,

and we have defined

ρ2
+ = r2

+ + a2 cos2 θ , r2
0 =

(

r2
+ + a2

) (

1 − r2
+/ℓ2

)

1 + 6r2
+/ℓ2 − 3r4

+/ℓ4 − q2/ℓ2
, k =

2ar+Ξr2
0

(

r2
+ + a2

)2 . (2.15)

The field strength (2.4) becomes

F = f(θ)kdr ∧ dt + f ′(θ)(dθ ∧ dφ + krdθ ∧ dt) , (2.16)

and the near horizon gauge field is

A = f(θ)(dφ + krdt) (2.17)

with

f(θ) =

(

r2
+ + a2

) [

qe

(

r2
+ − a2 cos2 θ

)

+ 2qmar+ cos θ
]

2ρ2
+Ξar+

. (2.18)

This is a generalization of the near horizon extremal Kerr (NHEK) metric found in [17],

and has the same isometries up to a rescaling of φ,

K1 = ∂φ ,

K̄1 = ∂t , K̄2 = t∂t − r∂r, K̄3 =

(

1

2r2
+

t2

2

)

∂t − tr∂r −
k

r
∂φ . (2.19)

These generate U(1)L × SL(2, R)R. With the choice of gauge (2.17), A is also invariant

under diffeomorphisms generated by K1, K̄1,2,3.

3 Asymptotic symmetry group

The asymptotic symmetry group (ASG) of a spacetime is the group of allowed symmetries

modulo trivial symmetries. A symmetry is allowed if it generates a transformation that

obeys the boundary conditions, and it is trivial if its associated charge (defined below)

vanishes. The definition of the charge associated with a symmetry depends on the action,

so the ASG depends on both the action and the choice of boundary conditions.

– 5 –
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In this section we derive the ASG for near horizon extremal 4D black holes with the

Einstein-Maxwell action (2.1). It was proved in [9, 10] that when the cosmological constant

is zero or negative, the most general extremal, stationary, rotationally symmetric black hole

in this theory has a near horizon metric and gauge field of the form5

ds2 = Γ(θ)

[

−r2dt2 +
dr2

r2
+ α(θ)dθ2

]

+ γ(θ)(dφ + krdt)2 , (3.1)

A = f(θ)(dφ + krdt) .

This class of black holes includes the extremal dyonic Kerr-Newman black hole as well as

its AdS or dS generalization. Explicit expressions for f,Γ, γ, α, and k in these cases were

given in (2.14), (2.15), (2.18). For now, we assume non-zero angular momentum J > 0;

the J = 0 (extremal Reissner-Nordstrom) near horizon geometry degenerates to AdS2×S2

and will be considered in section 7.

3.1 Charges

To compute the charges associated with asymptotic symmetries, we use the formalism

of [20, 23]. There is a contribution from the Einstein action as in [3] plus a second contribu-

tion from the Maxwell term. Asymptotic symmetries of (2.1) can include diffeomorphisms

ζ under which

δζAµ = LζAµ (3.2)

δζgµν = Lζgµν

and U(1) gauge transformations Λ under which

δΛA = dΛ . (3.3)

We denote the infinitesimal field variations by aµ = δAµ and hµν = δgµν . The combined

transformation (ζ,Λ) has an associated charge Qζ,Λ defined by

δQζ,Λ =
1

8π

∫

(

kgrav
ζ [h; g] + kgauge

ζ,Λ [h, a; g,A]
)

(3.4)

where the integral is over the boundary of a spatial slice. The contribution from the

Einstein action is6

kgrav
ζ [h, g] =

1

4
ǫαβµν

[

ζνDµh − ζνDσhµσ + ζσDνhµσ (3.5)

+
1

2
hDνζµ − hνσDσζµ +

1

2
hσν(Dµζσ + Dσζµ)

]

dxα ∧ dxβ .

5 It is assumed that the generator of the rotational symmetry has a fixed point and that the topology

of the horizon is not a torus. The theorem does not apply with positive cosmological constant, but the

Kerr-Newman-dS black hole also has this form.
6Our sign conventions differ from [3]. We take the coordinate basis (t, φ, θ, r) and

R

dφ ∧ dθ = +1.

– 6 –
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The last two terms7 vanish for an exact Killing vector and in most cases do not contribute.

The Maxwell contribution is [20–24]

kgauge
ζ,Λ [δφ, φ] =

1

8
ǫαβµν

[

(

−1

2
hFµν + 2Fµγh ν

γ − δFµν

)

(ζρAρ + Λ)

−Fµνζρaρ − 2Fαµζνaα

]

dxα ∧ dxβ (3.6)

−1

8
ǫ µν
αβ aµ (LζAν + ∂νΛ) dxα ∧ dxβ ,

where δFµν ≡ gµαgνβ(∂αaβ − ∂βaα). Again, the last two terms vanish for an ex-

act symmetry.

The charge Qζ,Λ generates the symmetry (ζ,Λ) under Dirac brackets. The algebra of

the ASG is the Dirac bracket algebra of the charges themselves,

{Qζ,Λ, Qζ̃,Λ̃}DB = (δζ̃ + δΛ̃)Qζ,Λ (3.7)

=
1

8π

∫

(

kgrav
ζ

[

Lζ̃g; g
]

+ kgauge
ζ,Λ

[

Lζ̃g,Lζ̃A + dΛ̃; g,A
])

= Q[(ζ,Λ),(ζ̃,Λ̃)] +
1

8π

∫

(

kgrav
ζ

[

Lζ̃ ḡ; ḡ
]

+ kgauge
ζ,Λ

[

Lζ̃ ḡ,Lζ̃Ā + dΛ̃; ḡ, Ā
])

,

where ḡ, Ā on the last line denote the background solution (3.1).

3.2 Boundary conditions

For the ASG to be well defined, the Qζ,Λ must satisfy a number of consistency condi-

tions [20, 23]. One condition is that the charges must be finite for all g,A, h, a satisfying

the boundary conditions, so the boundary conditions must be chosen carefully.

For metric fluctuations around the geometry (3.1), we impose the same boundary

conditions used in [3] for the NHEK geometry,

hµν ∼ O











r2 1 1/r 1/r2

1 1/r 1/r

1/r 1/r2

1/r3











(3.8)

in the basis (t, φ, θ, r). Just as for NHEK, an additional nonlinear boundary condition is

imposed below to forbid excitations above extremality. This is also needed to render the

charges well defined. For the gauge field we impose the boundary condition

aµ ∼ O(r, 1/r, 1, 1/r2) . (3.9)

The most general diffeomorphisms which preserve the boundary conditions on the metric

are [3]

ζǫ = ǫ(φ)∂φ − rǫ′(φ)∂r (3.10)

ζ̄ = ∂t

7These two terms, and the last two terms in (3.6), are called the supplementary terms and are absent

in the Iyer-Wald formalism [18, 19].

– 7 –
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plus subleading terms given in [3]. We take the basis ζn with ǫn = −e−inφ. The gauge field

transforms under ζǫ as

δǫA = fǫ′(dφ − krdt) . (3.11)

This does not satisfy the boundary condition (3.9), so we must add a compensating U(1)

gauge transformation to restore δAφ = O(1/r). A similar situation was encountered for

the symmetry generators of AdS2 in [25]. An alternative might be to loosen the boundary

condition to allow δAφ = O(1), but this does not affect the central charge and one would

need to check that such a choice leads to a consistent ASG. The appropriate compensating

gauge transformation is

Λ = −f(θ)ǫ(φ) . (3.12)

Under the combined gauge + diffeomorphism transformation,

δǫA = −krf(θ)ǫ′(φ)dt − f ′(θ)ǫ(φ)dθ . (3.13)

The boundary conditions also allow asymptotic gauge transformations

Λa = Λa(t, θ) + O(1/r) , (3.14)

where the subleading term can be seen to be trivial after computing the charges. The

leading term is not trivial, but it generates an algebra with no central terms. Since we

wish to focus on the left-moving Virasoro algebra of the extremal black hole, we impose

the additional boundary conditions

Q∂t = QΛa = 0 . (3.15)

As explained in [3], the restriction to fields satisfying (3.15) is consistent because the

generators ∂t and Λa commute with other generators in the ASG. In other situations, it

may be appropriate to relax (3.15), or perhaps to choose different boundary conditions

altogether. With our choice of boundary conditions, the asymptotic symmetries consist of

the pairs (ζn,Λn), with the algebra

[(ζn,Λn), (ζm,Λm)] = ([ζn, ζm], [Λn,Λm]ζ) (3.16)

where [ζn, ζm] is the Lie commutator and

[Λn,Λm]ζ = ζµ
n∂µΛm − ζµ

m∂µΛn . (3.17)

This is the Virasoro algebra with vanishing central charge,

i[(ζn,Λn), (ζm,Λm)] = (n − m)(ζn+m,Λn+m) . (3.18)

4 Central charge

Using (3.7) and taking Λ = Λ(θ, φ), the Dirac brackets between symmetry generators are

i{Qζǫ,Λ, Qζǫ̃,Λ̃
}DB = iQ[(ζǫ,Λ),(ζǫ̃,Λ̃)] −

ik

16π

∫

dθdφ

√

α(θ)γ(θ)

Γ(θ)

(

f(θ)Λǫ̃′ + Γ(θ)ǫ′ǫ̃′′

+[f(θ)2 + γ(θ)]ǫǫ̃′ −
(

ǫ,Λ ↔ ǫ̃, Λ̃
)

)

, (4.1)

– 8 –
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where the terms including f(θ) comes from the gauge field (3.6), and the others from

the gravitational part (3.5). The algebra of the ASG is one copy of the Virasoro algebra

generated by (ζn,Λn) with charges Qn. The boundary conditions (3.8), (3.9) ensure that

the Qn are finite, and from (4.1) their algebra is

i{Qm, Qn}DB = (m − n)Qm+n +
c

12

(

m3 − Bm
)

δm+n,0 , (4.2)

where B is a constant that can be absorbed by a shift in Q0. The central charge denoted

cL has contributions from kgrav and kgauge,

c = cgrav + cgauge . (4.3)

We find

cgrav = 3k

∫ π

0
dθ

√

Γ(θ)α(θ)γ(θ) (4.4)

cgauge = 0 . (4.5)

This result for c applies to extremal black holes coming from the action (2.1).8 For the

Kerr-Newman-AdS-dS black hole, using (2.14), (2.15), (4.3), (4.4), we find

c =
12r+

√

(3r4
+/ℓ2 + r2

+ − q2)(1 − r2
+/ℓ2)

1 + 6r2
+/ℓ2 − 3r4

+/ℓ4 − q2/ℓ2
. (4.6)

5 Temperature

The Hartle-Hawking vacuum for a Schwarzschild black hole, restricted to the region outside

the horizon, is a density matrix ρ = e−E/TH at the Hawking temperature TH . For an

extremal black hole, the Hawking temperature vanishes, so one might expect that the

analog of the Hartle-Hawking vacuum (known as the Frolov-Thorne vacuum for Kerr) to

be a pure state. In fact this is not the case because there are additional thermodynamic

potentials involved which are conjugate to the charge and spin. The extremality constraint

requires that any fluctuations satisfy

0 = THdS = dMADM − (ΩHdJ + ΦedQe + ΦmdQm) . (5.1)

where Φe,m are electric and magnetic potentials. Equivalently any variation in J or Q is

accompanied by an energy variation

dMADM = ΩHdJ + ΦedQe + ΦmdQm. (5.2)

For such constrained variations we may write

dS =
dJ

TL
+

dQe

Te
+

dQm

Tm
, (5.3)

8More generally, the formula for cgrav gives the gravitational contribution to the central charge associated

with ζǫ for the geometry (1.1). Black holes with this near horizon metric but in a different theory could

have additional contributions from other terms in the action.
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where the temperatures are easily computed from the expression for the extremal entropy.

In the absence of charge or a cosmological constant we have simply S = 2πJ and TL = 1
2π .

More generally

TL =

(

1 + 6r2
+/ℓ2 − 3r4

+/ℓ4 − q2/ℓ2
) [

2r2
+

(

1 + r2
+/ℓ2

)

− q2
]

4πr+

[(

1 + r2
+/ℓ2

) (

1 − 3r2
+/ℓ2

)

+ q2/ℓ2
]

√

(

1 − r2
+/ℓ2

) (

3r4
+/ℓ2 + r2

+ − q2
)

. (5.4)

This can also be written TL = 1/2πk where k was defined in (2.15). A similar expression

for Te,m will be given when it is needed below. The generalized Hartle-Hawking vacuum

state around an extremal black hole is then the density matrix

ρ = e
−

L0
TL

−
q̂e
Te

−
q̂m
Tm (5.5)

where L0 and q̂e,m are the operators for spin and charge. Since the boundary CFT is dual

to the bulk gravity system, the dual of the black hole is described by the CFT in the mixed

state (5.5).

6 Entropy

We have computed the central charge (4.6) and temperature (5.4) of the CFT dual to the

extreme Kerr-Newman-AdS-dS black hole. Assuming the Cardy formula, we obtain the

statistical entropy of the CFT

S =
π2

3
cTL =

π
(

2r4
+/ℓ2 + 2r2

+ − q2
)

1 − 2r2
+/ℓ2 − 3r4

+/ℓ4 + q2/ℓ2
, (6.1)

in precise agreement with the Bekenstein-Hawking entropy (2.11). Note that only the

temperature TL is needed here, as it is the potential conjugate to the zero mode of the

Virasoro algebra.

In (6.1) we use the Cardy formula in the canonical ensemble, which is easily derived

from the more familiar microcanonical version; for a derivation and related discussion,

see [26]. In general, the central charge in the Cardy formula is actually an effective central

charge ceff = c− 24∆0, where ∆0 is the lowest eigenvalue of L0 [27]. Here we have assumed

that in the semiclassical limit we may take c ∼ ceff. A sufficient but not necessary condition

for the validity of the Cardy formula is T ≫ c. This condition is obeyed here only for a

slowly rotating, highly charged black hole. In the highly rotating case the condition is

violated, but the applicability of the Cardy formula may nonetheless follow from a small

mass gap and the existence of highly twisted sectors in the CFT, as discussed for Kerr in [3].

7 Reissner-Nordstrom-AdS black holes

The central charge of the Kerr-Newman-AdS black hole is proportional to J . Therefore,

in the limit of the Reissner-Nordstrom-AdS black hole with J → 0, the central charge

approaches zero. This cancels against the singular behavior of TL to produce a finite

entropy that matches the Bekenstein-Hawking result

SRN = πr2
+ . (7.1)
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While the answer matches, the description is clearly singular in this limit. In this section

we propose a dual description of the microscopic entropy of the extremal J = 0 Reissner-

Nordstrom black hole which does not require a singular temperature and central charge.

The electromagnetic field defines an S1 fibered over AdS2. The J = 0 description

given here requires the additional assumption that this gauge S1 can be treated as an extra

dimension. This allows us to find a Virasoro algebra involving conformal transformations of

the fiber. While we will see this yields the desired result, it is not clear to us when we expect

this to be valid. In general this means the theory must contain a tower of charged states

which correspond to Kaluza-Klein modes and transform into one another by this Virasoro.

In gravity there is always a tower of charged states corresponding to charged black holes.

In string theory, it is often, but not always, the case that the gauge S1 can be mapped

to a geometric S1 by a duality transformation, which justifies our assumption. From the

worldsheet point of view, a spacetime gauge field implies a worldsheet current, and the

corresponding U(1) worldsheet boson indeed behaves like an extra dimension. Finally, in

the case of 5D spinning black holes, where there is no duality map of the gauge S1 to a

geometric one, it was shown in [28] that near maximal spin it nevertheless behaves like a

geometric one. So we see the assumption is at least often valid, and we know of no cases

where it is not valid.

Turning this around, the success of the black hole microstate counting based on this

assumption suggests that it may always be valid in a consistent quantum theory of gravity.

The near horizon isometry group of the Kerr-Newman-AdS black hole is only

SL(2, R)R × U(1)L (7.2)

but there is an additional U(1)gauge symmetry. We can combine the U(1) gauge bundle

with the geometry and write the 5D total space as [28]

ds2 = ds2
BH + (dy + A)2 , (7.3)

where y is the fiber coordinate with period 2π and ds2
BH is the 4D near horizon black

hole metric (2.13). The geometrical fiber φ degenerates when the angular momentum

vanishes, a → 0, and the gauge fiber y degenerates when the charges qe, qm vanish. This

is similar to the 5D Kerr-AdS case studied in [14], with qe taking the place of the second

angular momentum.

Because we are interested in the Reissner-Nordstrom black hole a = 0, we should

choose a gauge for A that is non-singular as a → 0. The simplest choice is

A → A − qer+

2a
dφ (7.4)

where the original A was given in (2.17), (2.18). Setting a = 0,

A = qer
r̄2
0

r2
+

dt + qm cos θdφ (7.5)

where

r̄2
0 = lim

a→0
r2
0 = r2

+

1 − r2
+/ℓ2

1 + 6r2
+/ℓ2 − 3r4

+/ℓ4 − q2/ℓ2
. (7.6)
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7.1 Central charge

Treating the gauge fiber y like a geometric S1 allows us to extend the U(1)gauge symmetry

to a Virasoro algebra generated by

ζ(y) = ǫ(y)∂y − rǫ′(y)∂r . (7.7)

To compute the central charge, we treat the 5D total space (7.3) geometrically, so the

charges are given by the 5D generalization of (3.5) coming purely from the 5D Einstein

action (with Newton’s constant G
(5)
N = 2π in order to reproduce G

(4)
N = 1 after integrating

over y). We choose boundary conditions on the 5D metric

hµν ∼ O















r2 r 1/r 1/r2 1

1/r 1 1/r 1

1/r 1/r2 1/r

1/r3 1/r

1















, (7.8)

in the basis (t, φ, θ, r, y). These are similar to (3.8), but do not allow ζǫ and do allow ζ(y).

The most general diffeomorphisms which preserve this boundary condition are of the form

ζ =
[

bt + O
(

1/r3
)]

∂t +
[

−rǫ′(y) + O(1)
]

∂r +
[

bφ + O
(

1/r2
)]

∂φ

+O (1/r) ∂θ +
[

ǫ(y) + O
(

1/r2
)]

∂y , (7.9)

where bt,φ are arbitrary constants.

Following the same steps used to compute the central charge in Kerr/CFT or in sec-

tion 3, the central charge associated with ζ(y) is

c(y) = 6qer̄
2
0 , (7.10)

where r̄0 was defined in (7.6).

7.2 Temperature

The temperature conjugate to electric charge is defined by

TedS = dQe , (7.11)

with other charges held fixed. In the non-rotating case a = 0,

Te =
r2
+

2πqer̄2
0

. (7.12)

7.3 Entropy

The Bekenstein-Hawking entropy of the extremal Reissner-Nordstrom-AdS black hole is

SBH = πr2
+ . (7.13)

In the CFT the Cardy formula gives the same result,

SCFT =
π2

3
c(y)Te = πr2

+ . (7.14)
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8 More general black holes

Consider the action

S =
1

16π

∫

d4x
√−g

(

R − 1

2
fAB(χ)∂µχA∂µχB − V (χ) − 1

4
gIJ(χ)F I

µνF Jµν

)

+
1

2

∫

hIJ(χ)F I ∧ F J , (8.1)

where χA are scalar fields, F I = dAI are U(1) field strengths, the functions fAB(χ) and

gIJ(χ) are positive definite matrices, and the scalar potential is non-positive. It was shown

in [9] that if we assume a rotational symmetry with a fixed point and that the horizon

topology is not a torus, then the most general near horizon metric of a stationary, extremal

black hole in this theory is of the form (1.1). The near horizon scalar fields and gauge fields

have the form

χA = χA(θ) , AI = f I(θ)(dφ + krdt) . (8.2)

Here k is constant, Γ, α, γ, χA and f I are unspecified functions of θ, and the coordinates

are defined with 0 < θ < π and 0 < φ < 2π. The Bekenstein-Hawking entropy of such a

black hole is

Sgrav =
π

2

∫ π

0
dθ

√

Γ(θ)α(θ)γ(θ) . (8.3)

The action (8.1) also describes certain higher dimensional black holes with Rt × U(1)D−4

symmetry, after Kaluza-Klein reduction and moving to the 4D Einstein frame. One

example is a Kaluza-Klein black hole with internal space TD−4. There are also many

five-dimensional black holes with non-trivial horizon topology, including the Myers-Perry

black hole, black rings, and black saturns [30–36], that have Rt ×U(1)2 spacetime symme-

try. Upon Kaluza-Klein reduction to four dimensions, all of these solutions are described

by (8.1) and have an additional U(1) isometry, so the statistical entropy of these black

holes is also addressed in this section.

It is possible to compute the asymptotic symmetry group of this geometry along the

lines of section 3. The expression for the asymptotic charges Qζ,Λ would have contributions

from the scalar field in the action (8.1), and kgauge would be modified by the functions gIJ(χ)

that appear in front of the gauge kinetic term. Unless there is some obstruction to including

ζǫ in the ASG, the asymptotic symmetries include a Virasoro algebra, and the gravitational

contribution to its central charge was computed in section 4.

Without first working out the thermodynamics of the general black hole, we cannot

compute the temperature of the dual CFT. However, it is interesting to note that if we

naively generalize the formula

TL =
1

2πk
(8.4)
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derived for Kerr-Newman-AdS-dS in (5.4), then the Cardy formula gives

SCFT =
π2

3
cgravTL (8.5)

=
π

2

∫ π

0
dθ

√

Γ(θ)α(θ)γ(θ)

=
Area(horizon)

4
,

in agreement with (8.3). This prescription to find the temperature of the dual CFT does

not depend on the asymptotic structure of the spacetime, so it allows us to reproduce the

Bekenstein-Hawking law using only information about the near horizon region.9 This is

plausible because the black hole entropy is an inherent property of the horizon, but (8.4)

has not been derived in the general case.

The prescription (8.4) for the temperature works similarly for the Reissner-Nordstrom

black hole. From (7.3), (7.5), the total space is

ds2 = ds2
BH +

(

dy + qe
r̄2
0

r2
+

rdt + qm cos θdφ

)2

, (8.6)

where y ∼ y + 2π. According to (8.4), we read off k = qer̄
2
0/r

2
+ from the coefficient of rdt

and obtain the dual temperature

Ty =
r2
+

2πqer̄2
0

, (8.7)

in agreement with (7.12).

Although the temperature formula (8.4) works empirically, note that we have not ac-

counted for non-gravitational contributions to the central charge in the CFT entropy (8.5).

For the Kerr-Newman-AdS-dS black hole and other black holes with the action (2.1), we

confirmed in section 4 that cgrav is the only contribution to the central charge; for the

more general black holes considered here, this agreement in the entropy can be taken as

evidence that c = cgrav. Another possibility is that in the general case, both the central

charge and the temperature receive additional contributions that cancel to produce the

correct entropy.

Acknowledgments

We are grateful to M. Guica, H. Irie, C. Keller, S. Minakami and W. Song for valuable

discussions, and M. Guica for collaboration on Kerr-Newman at an earlier stage. TN

would like to thank all members of the High Energy Theory Group at Harvard University

for their hospitality during his stay, where important parts of this work were done. The

work of KM is supported by JSPS Grant-in-Aid for Scientific Research No. 19·3715. The

work of TN is supported by JSPS Grant-in-Aid for Scientific Research No. 19·3589 and the

9For example, in four dimensional Einstein gravity with zero cosmological constant, there is a distorted

Schwarzschild black hole that is not asymptotically Minkowski space [29]. If the action (8.1) has a similar

solution with non-trivial asymptotic geometry, then the prescription above will reproduce its entropy.

– 14 –



J
H
E
P
0
4
(
2
0
0
9
)
0
1
9

Grant-in-Aid for the Global COE Program “The Next Generation of Physics, Spun from

Universality and Emergence” from the Ministry of Education, Culture, Sports, Science and

Technology (MEXT) of Japan. The work of TH and AS is supported in part by DOE grant

DE-FG02-91ER40654.

References

[1] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy,

Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].

[2] A. Sen, Black hole entropy function, attractors and precision counting of microstates,

Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [SPIRES].

[3] M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence,

arXiv:0809.4266 [SPIRES].

[4] S. Carlip, What we don’t know about BTZ black hole entropy,

Class. Quant. Grav. 15 (1998) 3609 [hep-th/9806026] [SPIRES].

[5] S. Carlip, Black hole entropy from conformal field theory in any dimension,

Phys. Rev. Lett. 82 (1999) 2828 [hep-th/9812013] [SPIRES].

[6] M.-I. Park, Hamiltonian dynamics of bounded spacetime and black hole entropy: canonical

method, Nucl. Phys. B 634 (2002) 339 [hep-th/0111224] [SPIRES].

[7] G. Kang, J.-i. Koga and M.-I. Park, Near-horizon conformal symmetry and black hole

entropy in any dimension, Phys. Rev. D 70 (2004) 024005 [hep-th/0402113] [SPIRES].

[8] K. Hotta, Y. Hyakutake, T. Kubota, T. Nishinaka and H. Tanida, The CFT-interpolating

Black Hole in three dimensions, JHEP 01 (2009) 010 [arXiv:0811.0910] [SPIRES].

[9] H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes,

Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [SPIRES].

[10] H.K. Kunduri and J. Lucietti, A classification of near-horizon geometries of extremal

vacuum black holes, arXiv:0806.2051 [SPIRES].

[11] T. Azeyanagi, T. Nishioka and T. Takayanagi, Near extremal Black hole entropy as

entanglement entropy via AdS2/CFT1, Phys. Rev. D 77 (2008) 064005 [arXiv:0710.2956]

[SPIRES].

[12] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [SPIRES]; Aspects of holographic

entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [SPIRES].

[13] J. D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic

symmetries: an example from three-dimensional gravity,

Commun. Math. Phys. 104 (1986) 207 [SPIRES].
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